

PULSE

Platform for European Medical Support during major

emergencies

WP4 - Tools

Deliverable D4.3 - Logistic tool

30/11/2015

 2 D4.3 Logistic tool

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other.

**Security Class: PU: Public; PP: Restricted to other programme participants (including the
Commission); RE: Restricted to a group defined by the consortium (including the Commission);
CO: Confidential, only for members of the consortium (including the Commission).

Title: Document Version:

D2.2: Use Case Specification v1.1 Project Number: Project Acronym: Project Title:

607799 PULSE Platform for European Medical Support

during major emergencies

Contractual Delivery
Date: Actual Delivery Date: Deliverable Type*-Security**:

30/11/2015 30/11/2015 R - PU

Responsible: Organisation: Contributing WP:

Silvano Mignanti Selex ES WP4

Authors (organisation)

Silvano Mignanti (SES), Francesco Malmignati (SES)

Abstract:
The purpose of this document is to provide a report on the Logistic tool component. This is an
important module of the PULSE platform since it is used to store all the information available
regarding the crisis resources’ status and allows a real-time retrieval of these data. In addition to this,
the Logistic tool is able to calculate the optimal dispatch of the casualties to the hospitals. Therefore,
this deliverable also provides a detailed description of the algorithm that have been defined for the
generation of this optimal dispatch.

Keywords:

Logistic, optimal, heuristic, resources, crisis, overview

 3 D4.3 Logistic tool

Revisions:

Revision Date Description Author (Organisation)

0.1 21/09/15 First inputs to the document Silvano Mignanti (SES)

0.2 20/10/15 Finalization of chapters 4 and 5 Silvano Mignanti (SES)

0.3 03/11/15 Chapter 6 Francesco Malmignati (SES)

0.4 06/11/15 Editing of the document Francesco Malmignati (SES)

1.0 09/11/15 Final version of the document Francesco Malmignati (SES)

1.1 26/11/15 Internal review Paul Kiernan (SKY)

1.2 27/11/15 Addressing final review
comments

Francesco Malmignati (SES)

 4 D4.3 Logistic tool

Table of contents

Revisions: .. 3
List of figures ... 5
List of Tables ... 6
1 List of acronyms ... 7
2 Executive Summary ... 8
3 Introduction ... 9

3.1 Scope of the Document .. 9
3.2 Structure of the Document .. 9
3.3 Relation with other Deliverables ... 9

4 Tool description .. 10
4.1 Objective ... 10
4.2 Functionalities ... 10
4.2.1 Real-time crisis information management .. 10
4.2.2 Optimized dispatch .. 12

4.2.2.1 Details on the optimization problem ... 12
4.3 Relation with WP2 Use Cases .. 18

5 Tool architecture... 20
5.1 Software Component Architecture.. 20
5.1.1 Logistic Manager ... 20
5.1.2 Optimization Engine .. 21
5.2 Component relation to overall PULSE architecture 21

6 Component Technologies .. 23
6.1 List of core technologies ... 23
6.2 3rd Party libraries and licenses .. 23

References .. 25

 5 D4.3 Logistic tool

List of figures

Figure 1: Example of JSON file ... 12
Figure 2: Logistic tool component architecture ... 20
Figure 3: PULSE Architecture ... 22

 6 D4.3 Logistic tool

List of Tables

Table 1 - Logistic tool relations with WP2 use cases ... 19
Table 2 - DSVT 3rd party libraries and licenses ... 24

 7 D4.3 Logistic tool

1 List of acronyms

Acronym Definition

API Application Programming Interface

(S)CRUD (Search), Create, Read, Update, Delete

DB DataBase

DBMS DB Management System

DSVT Decision Support Validation tool

GPS Global Positioning System

GUI Graphical User Interface

JDBC Java DataBase Connectivity

JPA Java Persistence API

JSON JavaScript Object Notation

MPORG MultiPlayer Online Role Playing Game

REST REpresentational State Transfer

SCGT Surge Capacity Generation Tool

SQL Structured Query Language

 8 D4.3 Logistic tool

2 Executive Summary

The aim of the deliverable D4.3 is to describe the PULSE Logistic Tool, with its sub-
components, the provided functionalities and the relations with the use cases defined
in WP2.
The aim of the Logistic Tool component is to provide both functionalities to manage
data regarding the events, in particular with respect to the crisis management, and an
optimization mechanism, able to provide an almost optimal solution that, by using the
Health care facility model defined in WP3, assesses the required stockpiles of any
necessary equipment, medications and vaccinations present in the different hospitals
and is able to assign all the wounded to the proper hospitals using as many hospital
resources as possible and sending them in the minimum amount of time.
The document provides also a description of the various components of the Logistic
Tool and, in particular, a formalization of the optimization problem being resolved by
the tool is presented.

 9 D4.3 Logistic tool

3 Introduction

3.1 Scope of the Document

This document is a covering document to support the software delivery of the PULSE
Logistic tool.
It summaries the software component delivery and provides high-level details on the
architecture, technologies and underlying libraries on which the software component
has been developed.

3.2 Structure of the Document

This document is structured into the following sections.
• Description of the Logistic tool objective.
• Main functionalities of the Logistic component including a detailed description

of the optimization algorithm.
• Description of the Logistic tool internal architecture and relation of this

component with other elements of the PULSE platform architecture;
• List of technologies adopted for the implementation of the Logistic tool;
• List of underlying 3rd party libraries used for Logistic tool implementation and

summary of the corresponding licenses

3.3 Relation with other Deliverables

The work presented in this deliverable is related to the following WP2 and WP4
deliverables:

• D2.2 - Use case specification [5] – This document describes the use cases
related to two PULSE reference scenarios: SARS-like epidemics and Stadium
crush.

• D4.1 – Decision support Validation tool [1] – It is the tool that invokes the API
provided by the Logistic tool and provides a graphic front-end for the
management of the crisis resources.

• D4.5 – Training tools [3] – The MPORG described in D4.5 [3] invokes the
Logistic tool API to obtain the status of the crisis resources.

 10 D4.3 Logistic tool

4 Tool description

4.1 Objective

The Logistic tool is a fundamental module of the PULSE platform. It is in fact the
component in charge of managing all the data regarding events, such as the
Ambulances, First responders, Wounded, Hospitals in an incident-like scenario and
the probable and confirmed cases and weak signals in a SARS-like scenario.
In addition to this, the Logistic tool is able to calculate the optimal dispatch of the
casualties to the available hospitals. It is in fact able to provide an almost optimal
solution to send all the wounded to the proper hospitals using as many hospital
resources as possible and sending them in the minimum amount of time. In order to
achieve this, it considers the actual resources present in the different hospitals and it
exploits the models defined in WP3, by invoking the Surge capacity generation tool
(SGCT) [2], for assessing the required stockpiles of any necessary equipment,
medications and vaccinations. These required stockpiles are crucial information for
the optimization algorithm (as described in 4.2.2.1) considering that it would be
impossible to efficiently predict the best allocation of people (that need resources) to
the hospitals (that provide resources) without considering such kind of information.

4.2 Functionalities

All the functionalities are made available to other components of the PULSE
architecture (e.g., DSVT) through a standard Web Service which can be invoked by a
RESTful interface. The messages exchanged with the Logistic tool by means of this
interface are HTTP-based requests and responses. They include a message body
whose information content is represented in JavaScript Object Notation (JSON).
Subsections 4.2.1 and 4.2.2 provide more details about these functionalities.

4.2.1 Real-time crisis information management

The main objective of the PULSE platform is to develop an operational framework that
allows the platform’s stakeholders to have access to timely key data, planning and
decisions that efficiently help them to manage a major healthcare crisis. For this
reason, it is crucial to have inside the PULSE platform a component that would be
able to store all the information available regarding the crisis resources’ status and to
allow a real-time retrieval of these data. The component in question is the Logistic tool
that is in charge of the management of the crisis information.
The resources handled by the tool are the following:

• Ambulance:
o Status (e.g. Free, with a patient),
o Category
o Destination (e.g. Hospital, incident location),
o Medical equipment on board,
o Time needed to reach the destination,
o GPS coordinates,
o Person currently assisted

• Person:
o Triage code,

 11 D4.3 Logistic tool

o Symptoms,
o Health condition,
o Required resources to be cured,
o GPS coordinates,
o Full name (if available)

• Hospital:
o GPS coordinates,
o Set of medical resources at disposal (e.g. Doctors, beds, etc.),
o Set of persons currently assisted

• Resource (e.g. equipment, medications and vaccinations):
o Category,
o Quantity,
o Unit of measure

• Rescuers:
o Category,
o GPS coordinates,
o Full name,
o Qualification,
o Set of medical resources at disposal,
o Tasks

• Task:
o Description,
o Completion percentage

The tool provides a proper RESTful interface to (S)CRUD (Create – Read – Delete –
Update – Search) all the described data. This functionality can be triggered with any
RESTful client by calling the URL: http://hostname:port/crisismanagement/ with the
following HTTP methods:

• GET: to retrieve (Search) information on instances on the database
• POST: to persist (Create) new instances on the database
• PUT: to persist updates (Update) to instances already existing on the

database
• DELETE: to remove (Delete) existing instances from the database.

and by adding at the end of the URL the name of the resource that we want to
manage. For example, if we want to retrieve the list of Ambulances we can send a
GET request to http://hostname:port/crisismanagement/ambulances. This method returns
the JSON file depicted in the following Figure 1.

http://hostname:port/crisismanagement/storeSARSSnapshot
http://hostname:port/crisismanagement/ambulances

 12 D4.3 Logistic tool

4.2.2 Optimized dispatch

Currently, when an incident happens, the people in charge usually decide for the
dispatch of the wounded to the hospitals by following the personal expertise and
experience. The Logistic tool tries to complement this by providing an almost optimal
solution that considers the actual resources present in the different hospitals and is
able to assign all the wounded to the proper hospitals using as many hospital
resources as possible and sending them in the minimum amount of time.
The optimisation tool calculates the optimal dispatchment of the various casualties to
the available hospitals, trying to maximise some indicators (e.g. the number of
survivors). It could be accessed through a RESTfull interface passing to the system
the entire status of the critical event, it returns the optimal dispatchment of the
provided set of casualties. A detailed description of the optimization problem is
provided in 4.2.2.1.

4.2.2.1 Details on the optimization problem

Core to the Logistic Tool, is the optimization problem, i.e. the problem the tool aims to
solve. Here follows a formal definition of the whole problem.
Let’s define a set of patients as follows:

1 ()() { (),..., ()}a tP t p t p t=

where each patient ip is () ((), ())i i i ip t p S t N t= , with {1,..., ()}i I a t∈ = and where:

[
 {
 "id": 1,
 "status": "free",
 "category": "A",
 "timeToDestination": 50,
 "coords": {
 "lat": 41.9,
 "lng": 12.4833333
 },
 "destination": {
 "lat": 41.84,
 "lng": 12.38321
 },
 "resources": [
 {
 "category": "blood 0-",
 "quantity": 5,
 "unitOfMeasure": "unit",
 "ambulanceId": 1,
 "id": 1
 },
 {
 "category": "defibrillator",
 "quantity": 1,
 "unitOfMeasure": "unit",
 "ambulanceId": 1,
 "id": 2
 }
]
 }
]

Figure 1: Example of JSON file

 13 D4.3 Logistic tool

• () { (), ()}i i iS t V t V t= ∆ is the status of the patient ip at time t ;
• 1() { (),..., ()}i i

i bV t v t v t= is the set of values of the various (vital) parameters of
the patient ip at time t ;

• 1() { (),..., ()}i i
i bV t v t v t∆ = ∆ ∆ is the variation function of the parameters of the

patient ip during the time, calculated at time t ;
• 1() { (),..., ()}i i

i cN t n t n t= is the set of the necessities, i.e. resources the patient

ip requires to be cured, at time t ;

Note:
()a t = number of patients at time t ;

b = number of vital parameters (at ANY time) of the patients
c = number of possible types of resources (at ANY time) for patients to be required
(and also being possibly available at the hospitals)
Let’s also define a set of hospitals:

1 ()() { (),..., ()}d tH t h t h t= , where, each hospital jh is () ((),? ()?, ())j j j j jh t h R t R t T t= ∆ ,
with {1,..., ()}j J d t∈ = , where:

• 1() { (),..., ()}j j
j cR t r t r t= , available resources at the hospital jh at time t , j J∈

;
• 1? () { (),..., ()}?j

c
j

jR t r t r t∆ = ∆ ∆ , is the variation function of the resources of the
hospital jh during the time, calculated at time t ;

• ()jT t is the time needed to reach the hospital jh at time t .

Note:
c = number of possible types of resources being possibly available at the hospitals (at
ANY time)

()d t = number of hospitals at time t ;

Let’s finally introduce a set of ambulances as follows:

1 ()() { ,..., }e tA t A A=

Where
()e t = number of available ambulances at time t .

The overall idea is to dispatch the various patients (injured/wounded) to the available
hospitals in order to:

a) Maximize the number of patients surviving the critical event
b) Minimize the overall time required to cure all the patients (including time to

reach the hospitals)
c) Evenly distribute the patients among the hospitals

The overall idea of the first objective is to maximize the number of persons surviving
to the critical event. At the event location, a triage will be made to catalogue people
among red, yellow and green ones, in descending order of gravity of their situation. A
possible fourth colour is “black”, reserved for people so unlucky to be in a situation

 14 D4.3 Logistic tool

there will be no possibility they survive even if cured. In such a dramatic case, usually
going to be adopted only in very exceptional cases, considering it would be “useless”
to send such a person to a hospital, the system will decide to reserve the cures to
other people having chances to survive.
The second objective is not important as the first one (actually, it is infinitely less
important than the first one), but, introducing it, it would be possible to obtain that:

• Patients are going to be cured as fast as possible
• Patients are going to be cured in the minimum possible overall time. This is

very important: typically, persons are cured in a strict “red, yellow, green”
order, which is not always the best choice: in fact, if a person of higher priority
requires resources not available at that moment, there could be space to cure
a person with lower priority, if this one requires less resources and its cures
end “in time” (which means, the patient with lower priority releases resources
sufficiently fast to not cause delays in the cure of patients with higher priorities)

The third objective is (again, infinitely) less important than the first two, but “evenly”
distributing patients among hospital will avoid to overload specific hospitals which, in
chain, means to reduce the overall time of cures. An important note about “evenly”:
this not implies that patients are sent in an equal number to each hospital, but that
patients are sent to the hospitals based on the actual capacity of the hospital to cure
them. For example, if an hospital is “as big as twice” another hospital, meaning it has
twice the resources, the doctors… of the other one, an even distribution is to send to
the first hospital two times the patients sent to the first one.
Let’s continue the formalization defining a decision function:

,

1, if the patient is sent to the hospital at time
0, otherwis

(
e

) i
i

j
j t

h t
d

p
= 


Let’s also define a decision matrix

1,1 1,2 1, ()

2,1 2,2 2, ()

(),1 (),2 (), ()

() () ... ()
() () ... ()

()
...

() () ... ()

d t

d t

a t a t a t d t

d t d t d t
d t d t d t

D t

d t d t d t

 
 
 =
 
 
  

containing all the decision taken for all the patients at time t (i.e., the matrix indicates,
at time t , in which hospital each patient is sent). Note that sending a certain patient

ip at time t to the hospital ih does not mean that patient will be cured at time t ; the

patient will be cured at a time it τ+ , where iτ is potentially different for each patient.

For this reason, we will define a set 1 2 ()() { , ,..., }a tT t τ τ τ= containing all the time
instants all the patients (from 1 to ()a t) will be cured in the hospitals they are sent at
time t .
While pursuing the objectives introduced above, several constrains hold.

At any instant t , if a certain patient ip is decided to be sent to the hospital jh at time
t , for being cured at time t τ+ , it should be (for that τ): () ()j iR t N tτ τ+ ≥ + . The
previous inequality among vectors is intended as meaning that each element of the

 15 D4.3 Logistic tool

two vectors is respecting the inequality (i.e. () (), {1,..., }j
k

i
kr t n t k cτ τ+ ≥ + ∀ ∈). In

behalf of the previous one, we will consider the following inequality:
,() () (), {1,..., }j

k k i j
ir t n t d t k cτ τ+ ≥ + ⋅ ∀ ∈ , which also considers whether or not a

patient ip is decided to be sent to the hospital jh at time t .

This means that, at time t τ+ , all the required resources for the patient are available
at that hospital: if at that time the constrain is not respected, the hypothesis is that
patient could not be cured at all!

Another fact we must assure is that each patient has to be assigned (at time t) only to
a single hospital:

()

,
1

() 1,
d t

i j
j

d t i I
=

= ∀ ∈∑

The previous is not sufficient: we also have to assure each patient is assigned once to
(one among) the hospitals, so that we need to guarantee that:

() ()

,
1 1

() 1,
a t d t

i j
t j

d t i I
= =

= ∀ ∈∑∑

Finally we also need to guarantee that the sum of the needs for each resource of all
the patients sent to a certain hospital to be cured at a certain time t is lower than the
amount of the available resources (for each type) in that hospital at that time. To this
aim, we need to define a presence function (a “cure” function):

,

1, if the patient is cured at hospital at time
0, otherwis

(
e

) i
i

j
j t

h t
c

p
= 


Let’s also define a presence matrix:

1,1 1,2 1, ()

2,1 2,2 2, ()

(),1 (),2 (), ()

() () ... ()
() () ... ()

()
...

() () ... ()

d t

d t

a t a t a t d t

t c t c t
t c t c t

C t

t t c

c
c

c c t

 
 
 =
 
 
   .

We can now introduce the constraints:
()

,
1

() () () , ()
a t

i j
k i j k

i
n t c t r t j J t T t

=

⋅ ≤ ∀ ∈ ∀ ∈∑
.

Summarizing the constraints are:

1) ,() () (), , , {1,..., }, ()j
k k

i
i jr t n t d t i I j J k c T tτ τ τ+ ≥ + ⋅ ∀ ∈ ∀ ∈ ∀ ∈ ∈

2)

() ()

,
1 1

() 1,
a t d t

i j
t j

d t i I
= =

= ∀ ∈∑∑

3)

()

,
1

() () (), , {1,..., }, ()
a t

i j
k i j k

i
n t c t r t j J k c t T t

=

⋅ ≤ ∀ ∈ ∀ ∈ ∀ ∈∑

 16 D4.3 Logistic tool

Where:
1) guarantees any patients is sent to an hospital having at least all the resources

(e.g. equipment, medications and vaccinations) he needs to be cured,
2) guarantees each patient is sent just to single hospital, and
3) guarantees that the sum of the resources of a certain type k requested by the

patients sent to a certain hospital j and cured in that hospital at a certain time
instant t , is at maximum equal to the available resources of that type k in that
hospital j in that time instant t .

Now let’s introduce the optimizations to be performed.
The simplest is the second (b), i.e. to minimize the overall time required to cure all the
patients; in formulas, it could be expressed as follows:

()

1
min

a t

i
i
τ

=
∑

Another optimization objective quite simple to be introduce is the “fairness”. First of all
we have to define what we consider as “fair”. The possible choices are mainly two:

1) define fair an assignment if it assigns the patients evenly distributing them
among the hospitals (considering all the constrains satisfied and any other
optimization objective having the same value – in few words, not considering
neither the constrains nor any other optimization objective).

2) define fair an assignment if it assigns the patients distributing them
proportionally to the “capacity” of the various hospitals.

The formula in order to obtain the first objective could be introduced as follows.
First of all let’s introduce an error function, defined as follows:

()

,
1

() () ()
a t

j j i j
i

e t N t d t
=

= −∑ , where

()je t is exactly the error function of the hospital jh at time t ;

()jN t is the “nominal capacity” of the hospital jh at time t : such a capacity is a
measure about how many patients a certain hospital could cure, at the same time, at
a certain time instant. Generally speaking, we can consider () ((), ())j j jt f t RN R t= ∆ ,
i.e. the capacity is a given function ()f ⋅ of the resources (and of their variation) of the
hospital jh at time t . The rationale to introduce the variation is that a certain hospital,
for example with a certain number of doctors active at the same time, has a certain
number of doctors waiting for their turn to go to work in that hospital. For this reason,
a hospital having in media 10 doctors active at the same time, it is expected to have
more or less the same number of doctors active during all the day. Furthermore, in
cases of crisis, it is possible to expect the number of doctors even to increase; in few
words, considering 3 turns of 8 hours, in such a hospital, it could be expected the total
number of doctors working in that hospital to be more or less 25-30. Consequently, for
a hospital with 100 active doctors it could be expected a pool of about 250-300
doctors.
Defined in this way, the error is the difference among the nominal capacity of the
hospital jh at time t and the patients requested (going) to be cured in that hospital in
the same time instant.

 17 D4.3 Logistic tool

With these definitions, we can introduce the following optimization objective:

4)
()

2

() 1
min ()

d t

jD t j
e t

=
∑ which exactly leads to a fair assignment as indicated in point (1) (we

remember that ()D t is the decision matrix).

In our opinion, for the reasons indicated above for the concept of “nominal capacity”,
(4) is not the fairest assignment: consider the following example. Suppose to have two
hospitals, the first with capacity 5, the second with capacity 50, and to have to assign
1000 patients. The various constrains could assign, in different order, up to the first 55
patients among the two hospitals, depending on their actual needs. Let’s suppose the
optimal assignment being 5 patients to the first hospital, 50 to the second, with both
the hospitals having all their resources assigned for 4 hours. The 56th patient will be
assigned, if all the remaining parameters are equals between the two hospitals, to the
first one, because this minimizes the (4). As well, patients from 57 to 100 will be
assigned to that hospital. From that point, the patients will be assigned one each to
the two hospitals, leading to 500 patients sent to each hospital. The point is that the
nominal capacity of the first hospital is just 5, while the second has 50, so that one
could expect the second hospital to be able to take care of much more patients of the
first one: not only 45 more, but something near to ten times the first one! For this
reason it is better to define a different error function:

5)

()

,
1

()
()

()

a t

i j
i

j
j

d t
t

tD
e ==

∑

This error function is (inversely) proportional to the nominal capacity of the hospitals,
and leads to much better results. Summarizing, we will consider the optimal function
defined in (4) where the error function is defined as in (5).
Finally we can introduce the first optimization objective. In order to do so, we need to
introduce some further notation.
First of all, we should define a function which measures the probability of survival of a
certain patient. It is important to notice that, in every hospital, or a the location of the
critical event, the patients incur in a triage phase, in which a triage code is assigned to
each of them. Such a code indicates the severity of the status of a patient, ranging
from white/green (minor disease, not critical), to red (patient at risk of life). Based on
this, and based on the vital parameters of each patient, we will assign a probability of
survival equals to 1 to each patient with triage colour different from red. Red patients
will have probability 0 to survive if not all the resources they require are available for
them, while a probability between 0 and 1 if the required resources are available. We
will also consider a further “triage” code, black, which indicate patients with no
chances to survive: in this group we will include patients requiring specific resources
which are not available and patients with no probability of survival even if cured. In
formulas, we will introduce:

, () ((), ()) { , , , , }i j i j iTc t g p t h t white green yellow red blackτ= + ∈

Where , ()i jTc t is the triage code assigned to the patient ip going to be cured at

hospital jh at time it τ+ and ()g ⋅ is a function that consider the status of the patient

ip and of the hospital jh at times t and it τ+ respectively. As described in [10], the
possible values are:

 18 D4.3 Logistic tool

• white: (dismiss) are given to those with minor injuries for whom a doctor's care
is not required; 100% chance of survival

• green: (wait) are reserved for the "walking wounded" who will need medical
care at some point, after more critical injuries have been treated; 100% chance
of survival.

• yellow: (observation) for those who require observation (and possible later re-
triage). Their condition is stable for the moment and, they are not in immediate
danger of death. These victims will still need hospital care and would be
treated immediately under normal circumstances; 100% chance of survival

• red: (immediate) are used to label those who cannot survive without immediate
treatment but who have a chance of survival; [0-100%] chance of survival

• black: (expectant) are used for the deceased and for those whose injuries are
so extensive that they will not be able to survive given the care that is
available; 0% chance of survival.

Note that the triage code is assigned to a patient at a certain time, but it could change
during the time: typically, a person with a yellow code which is not cured for a long
time could become a red code.
We will also define a function indicating the chance of survival, at time t , of a certain
patient ip expected (assigned) to be cured at hospital jh at time it τ+ :

,

, ,

,

1, () { , , }
() ((), ()) (0,1], ()

0, ()

i j

i j i j i i j

i j

if Tc t white green yellow
S t s p t h t if Tc t red

if Tc t black
τ

 ∈
= + ∈ =
 =

Where , ()i jS t is the survival function and ((), ())ii js p t h t τ+ is a function of the status

of the patient ip , at time t , going to be cured at hospital jh at time it τ+ . With these
definitions, we can finally introduce the most important optimization objective:

6)
()

, ,() 1
max () ()

a t

i j i jJ t i
S t d t

=

⋅∑ ,

i.e to maximize the chances of survival of all patients, optimizing their distribution
among hospitals.

4.3 Relation with WP2 Use Cases

Part of the work carried out in WP2, was focused on the definition of a set of use
cases for PULSE that have been detailed in the deliverable D2.2 [5]. In the following
paragraph, we will try to associate the functionalities described in section 4.2 with the
use cases where the DSVT is actually involved.
The Logistic tool, for its own nature, has to be considered as a “core” functionality of
the PULSE platform. Nevertheless, it is anyhow possible to determine some specific
use cases more strictly related to the tool itself:

 19 D4.3 Logistic tool

Table 1 - Logistic tool relations with WP2 use cases

Use cases Step Role
UC-SARS LIKE –
02
UC-SARS LIKE –
03
UC-SARS LIKE –
04

Step:
9.vii

The Logistic Tool, in particular the
Optimization Tool, will provide the optimal
dispatchment information about the
various casualties

UC–STADIUM
CRUSH – 02
UC–STADIUM
CRUSH – 04
UC–STADIUM
CRUSH – 08

N/A The Logistic Tool, in particular the Logistic
Manager, will act as the background DB
for the MPORG (UC–SC–2), for the Surge
Capacity and Bed Management (UC–SC–
4) and for the researches of the Casualty
Bureau Operation (UC–SC–8).

UC – STADIUM
CRUSH – 07

N/A The Logistic Tool, in particular the Logistic
Manager, will act as the source of
information for the post crisis evaluation.

 20 D4.3 Logistic tool

5 Tool architecture

5.1 Software Component Architecture

The Logistic Tool architecture is relatively simple, and it is depicted in the following
figure.

Figure 2: Logistic tool component architecture

The Logistic tool is composed of two sub-components: the Logistic Manager (see
5.1.1), which provides a web service interface for the management of the crisis
resources and the Optimization Engine (see 5.1.2), which provides a web service
interface for the generation of optimal dispatchment of the various casualties to the
available hospitals.

5.1.1 Logistic Manager

The aim of the Logistic Manager, within the Logistic Tool, is to provide means to store
and manage (SCRUD) data regarding events, among which, for example, the location
of the event, the hospitals, the ambulances, the casualties, etc.
The Logistic Manager is constituted by one sub-component called Crisis Information
Repository, which is the internal Database used by the Logistic Manager to store the
crisis information described in 4.2.1.
The Logistic Manager provides a RESTful interface called ICrisisResources, using
JSON syntax and the “standard” RESTful approach for the supported methods:

• GET: to retrieve information on instances on the database
• POST: to persist new instances on the database
• PUT: to persist updates to instances already existing on the database
• DELETE: to remove existing instances from the database.

The described operation can be triggered with any RESTful client by calling the HTTP
request method POST at the following URL:

 21 D4.3 Logistic tool

• http://hostname:port/crisismanagement/storeSARSSnapshot.

5.1.2 Optimization Engine

The optimization tool calculates the optimal dispatchment of the various casualties to
the available hospitals, trying to maximise some indicators (e.g. the number of
survivors), as described in 4.2.2. The Optimization Engine contains internally a
module called Optimizer that is in charge of the execution of the Optimization
algorithm. It is accessed through a RESTfull interface called IOptimization that accept
as input the entire status of the critical event. This status must contain:

• A set of wounded people (containing information regarding the number of
resources needed to cure each single injured person)

• A set of hospitals (containing information regarding the number of medical
resources available)

After the execution of the optimization algorithm, the Optimizer returns then the
optimal dispatchment of the provided set of casualties.

5.2 Component relation to overall PULSE architecture

Figure 3 shows a component diagram of the PULSE Platform Architecture where the
relations between the Logistic Tool and other tools are highlighted. As said in 5.1, the
Logistic Tool provides two different interfaces: the ICrisisResources and the
IOptimization. These two interfaces are invoked, in different occasions, by other tools
of the PULSE platform.
In particular the ICrisisResources interface is invoked by:

• the DSVT when the operational overview of the crisis must be depicted on the
GUI front-end. In this case the DSVT retrieves or updates the status of the
crisis resources (as described in 4.2.1) by invoking the Logistic tool interface.

• the MPORG (described in D4.5 [3]) when the tool wants to retrieve the status
of the crisis resources to simulate the scenario starting from the actual
scenario conditions.

The IOptimization interface is invoke instead by:
• the DSVT when a user asks for an immediate optimized dispatch of the

wounded to the hospitals surrounding the incident location.
• The DSVT during the simulation of the possible crisis evolution.
• The MPORG to compare the results obtained by the user during the “game”

with the “optimal” solution generated by the Logistic Tool.

http://hostname:port/crisismanagement/storeSARSSnapshot

 22 D4.3 Logistic tool

Figure 3: PULSE Architecture

 23 D4.3 Logistic tool

6 Component Technologies

6.1 List of core technologies

6.2 3rd Party libraries and licenses

As said in 5.1, the Logistic Tool is composed of 2 sub-modules the Logistic Manager
and the Optimization Engine.
The core technologies selected for the implementation of these components are:

• Logistic Manager
o Jetty – It is a Java-based Web Server used to deploy the web application

exposing the ICrisisResources interface. It implements an HTTP server
and servlet container capable of serving static and dynamic content either
from a standalone or embedded instantiations. This technology is
developed as a free and open source project as part of the Eclipse
Foundation [6].

o Jersey – It is an open source framework [7] that provides an API extending
the JAX-RS [8] toolkit with additional functionalities, with the purpose of
simplifying the implementation of RESTful services. This technology is
used to build the Web Service RESTful interface offered by the Logistic
Manager.

o H2 [12] – it has been selected as the DBMS constituting the Database of
the Logistic Manager, considering it is lightweight and could be easily
integrated in a “all-in-one” package, not requiring a mandatory preliminary
installation. Nonetheless, any kind of relational DB could be used as
DBMS, considering it is the code of the DB Manager itself that
automatically creates the structures of the tables of the database: this was
obtained by using of the Java Persistence API (JPA) that provides the
proper decoupling.

• Optimization Engine
o Jetty – It is the Web Server used to deploy the web application exposing

the IOptimization interface.
o Jersey – This technology is used to build the Web Service RESTful

interface offered by the Optimization Engine.
o OptaPlanner – it is a lightweight, embeddable planning engine [11]. It

allows solving optimization problems efficiently. OptaPlanner combines
sophisticated optimization heuristics and metaheuristics (such as Tabu
Search [13], Simulated Annealing [14] and Late Acceptance [15]) with very
efficient score calculation. It is the core of the Optimizer sub-component
and it is exploited to calculate the optimization algorithm defined in 4.2.2.1.

Below is a list of third party libraries/frameworks used and the licenses under which
they are distributed.

 24 D4.3 Logistic tool

Table 2 - DSVT 3rd party libraries and licenses

Product Version Vendor License
Jersey 9.2.10 Eclipse Apache 2.0
Jetty 2.17 Oracle Corporation Dual License:

- CDDL 1.1
- GPL 2

Hibernate ORM 5.0.2 RedHat LGPL V2.1
H2 1.3.176 Thomas Mueller Mozilla Public

License Version 2.0
OptaPlanner 6.1.0 RedHat Apache 2.0

 25 D4.3 Logistic tool

References

[1] PULSE Project Deliverable – D4.1 Decision Support Validation tool
[2] PULSE Project Deliverable – D4.4 Surge Capacity Generation tool
[3] PULSE Project Deliverable – D4.5 Training tools
[4] PULSE Project Deliverable – D4.8 Smartphone application
[5] PULSE Project Deliverable – D2.2 Use case specification
[6] Jetty, http://www.eclipse.org/jetty/
[7] Jersey, https://jersey.java.net/
[8] JSR 311 JAX-RS: Java™ API for RESTful Web Services, version 1.1,

https://jsr311.java.net/nonav/releases/1.1/spec/spec.html
[9] Hibernate ORM, http://hibernate.org/orm/
[10] Medical Triage: Code Tags and Triage Terminology,

http://www.medicinenet.com/script/main/art.asp?articlekey=79529
[11] OptaPlanner, http://www.optaplanner.org/
[12] H2, http://www.h2database.com/html/main.html
[13] Tabu search, Fred Glover (1989). "Tabu Search - Part 1". ORSA Journal on

Computing 1 (2): 190–206. doi:10.1287/ijoc.1.3.190
[14] Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). "Optimization by

Simulated Annealing". Science 220 (4598): 671–680.
Bibcode:1983Sci...220..671K. doi:10.1126/science.220.4598.671

[15] E. K. Burke and Y. Bykov. The late acceptance hill-climbing heuristic.
Technical Report CSM-192, University of Stirling, 2012

http://www.eclipse.org/jetty/
https://jersey.java.net/
https://jsr311.java.net/nonav/releases/1.1/spec/spec.html
http://hibernate.org/orm/
http://www.medicinenet.com/script/main/art.asp?articlekey=79529
http://www.optaplanner.org/
http://www.h2database.com/html/main.html

	Revisions:
	List of figures
	List of Tables
	1 List of acronyms
	2 Executive Summary
	3 Introduction
	3.1 Scope of the Document
	3.2 Structure of the Document
	3.3 Relation with other Deliverables

	4 Tool description
	4.1 Objective
	4.2 Functionalities
	4.2.1 Real-time crisis information management
	4.2.2 Optimized dispatch
	4.2.2.1 Details on the optimization problem

	4.3 Relation with WP2 Use Cases

	5 Tool architecture
	5.1 Software Component Architecture
	5.1.1 Logistic Manager
	5.1.2 Optimization Engine
	5.2 Component relation to overall PULSE architecture

	6 Component Technologies
	6.1 List of core technologies
	6.2 3rd Party libraries and licenses

	References
	Blank Page

