

PULSE

Platform for European Medical Support during major

emergencies

WP6 Integration

Deliverable D6.1 – Integration infrastructure description

29/02/2016

 2 D6.1 Integration infrastructure description

*Type: P: Prototype; R: Report; D: Demonstrator; O: Other.

**Security Class: PU: Public; PP: Restricted to other programme participants (including the
Commission); RE: Restricted to a group defined by the consortium (including the Commission);
CO: Confidential, only for members of the consortium (including the Commission).

Title: Document Version:

D2.2: Use Case Specification v1.1 Project Number: Project Acronym: Project Title:

607799 PULSE Platform for European Medical Support
during major emergencies

Contractual Delivery
Date: Actual Delivery Date: Deliverable Type*-Security**:

29/02/2016 18/04/2016 R - PU

Responsible: Organisation: Contributing WP:

Francesco Malmignati SES WP6

Authors (organisation)

Francesco Malmignati (SES), Massimiliano Taglieri (SES), Karl Chadwick (SKY)

Abstract:

This document aims at describing the technological solutions that have been adopted to
develop the PULSE integration and deployment infrastructure. It then gives insights on
how all the single modules are connected with each other and provides a description of the
different tools’ APIs invocations.

Keywords:

Integration, infrastructure, containers, microservices, SOA, service, Docker, deploy

 3 D6.1 Integration infrastructure description

Revisions

Revision Date Description Author (Organisation)

0.1 18/02/16 TOC proposal Francesco Malmignati (SES)

0.2
29/02/16 Contribution in paragraphs

4.1, 4.2, 4.3, 4.4 and
chapter 5

Francesco Malmignati (SES),
Massimiliano Taglieri (SES)

0.3
30/02/16 Integration of SKYTEK

contribution
Francesco Malmignati (SES),
Karl Chadwick (SKY)

0.4
11/03/16 Contribution to paragraph

5.2 and editing of the
document

Francesco Malmignati (SES),
Massimiliano Taglieri (SES)

0.5
15/03/16 Internal review and final

editing of the document
Francesco Malmignati (SES),
Massimiliano Taglieri (SES),
Paul Kiernan (SKY)

1.0 15/03/16 Final version of the
document

2.0

13/04/16 Addressing EU external
reviewer’s remarks regarding
the integration with external
system and standards. Two
new sections (4.11 and 4.12)
have been added

Francesco Malmignati (SES)

2.1
18/04/16 Internal review and final

editing of the document.
Francesco Malmignati (SES)
Paul Kiernan (SKY)

 4 D6.1 Integration infrastructure description

Table of contents

Revisions .. 3
List of figures .. 5
1 List of acronyms ... 6
2 Executive Summary ... 7
3 Introduction .. 8

3.1 Scope of the Document .. 8
3.2 Structure of the Document .. 8
3.3 Relations with other Deliverables .. 8

4 Architecture ... 9
4.1 High level description (SES) ... 9
4.2 DSVT – Logistic tool ... 11
4.3 DSVT – IAT .. 14
4.4 DSVT – PCET .. 18
4.5 DSVT – ENSIR ... 19
4.6 DSVT – SCGT .. 19
4.7 MPORG – Logistic tool ... 20
4.8 MPORG – SCGT .. 20
4.9 Smartphone app – Logistic tool... 21
4.10 Communication layer .. 23
4.11 Integration with external systems .. 24
4.12 Integration with existing standards .. 26

5 Integration infrastructure .. 28
5.1 Possible implementation strategies ... 28
5.1.1 Monolithic approach .. 28
5.1.2 Multi-tier approach .. 28
5.1.3 Service oriented architecture ... 28
5.1.4 Microservices approach .. 29
5.2 Our solution – Docker ... 29

6 Deployment ... 33
References ... 34

 5 D6.1 Integration infrastructure description

List of figures

Figure 1: PULSE Architecture – Component Diagram... 9
Figure 2: High level architecture ... 10
Figure 3: Get all Ambulances Response ... 12
Figure 4: Create Ambulance Input .. 13
Figure 5: Get Ambulance details Response .. 13
Figure 6: Update Ambulance Input .. 14
Figure 7: ‘Store Clinical Record’ request – Example of message body 15
Figure 8: ‘Store Keyword’ request – Example of message body 15
Figure 9: ‘Store rule’ request – Example of message body 16
Figure 10: ‘Notify Week Signal’ request – Example of message body 17
Figure 11: Optimization functionality invocation .. 20
Figure 12: Response from optimization functionality ... 20
Figure 13: SCGT Invocation .. 21
Figure 14: Retrieve Tasks list .. 21
Figure 15: Retrieve Messages List .. 21
Figure 16: A user accept a task .. 22
Figure 17: Task update ... 22
Figure 18: Triage message body .. 22
Figure 19: DSVT Manager .. 23
Figure 20: DSVT - Emergency Department integration .. 25
Figure 21: DSVT - ProMED Integration ... 25
Figure 22: Pulse Docker architecture .. 30
Figure 23: Post Crisis Evaluation Tool – Dockerfile to build the container’s image 30
Figure 24: Post Crisis Evaluation Tool – Docker-compose .. 31
Figure 25: PULSE Platform Deployment ... 33

 6 D6.1 Integration infrastructure description

1 List of acronyms

Acronym

DSVT
DoW
EDXL
ENSIR
GUI
HTTP
IAT
JSON
LT
PCET
MPORG
REST
SA
SARS
SGCT
SIR
SOA
SOAP
TT

 7 D6.1 Integration infrastructure description

2 Executive Summary

As stated in the DoW, one of the objective of WP6 is to “Design, develop and test the
integration infrastructure which will allow to easily integrate the different tools
developed in WP3-4”. This document aims at satisfying this requirement and then to
describe the technological solutions that have been adopted to develop the
aforementioned PULSE integration infrastructure.
The first part of this report is a general re-introduction to the PULSE architecture
(already defined and described in WP4) and a detailed description of the tools’
integration. This has been accomplished by giving insights on how all the single
modules are connected with each other and by providing a description of the different
tools’ APIs invocations.
The second part of the report consists instead in a more detailed summarization of the
technical solutions that have been put in place to efficiently create the deployment
infrastructure. After the analysis of four different available integration patterns, the
report provides a description of the adopted solution (specifically, the Microservices
approach) and the relative deployment framework (Docker) that has been used to
deploy the platform and to provide a common point of access to possible external
WP7 stakeholders.

 8 D6.1 Integration infrastructure description

3 Introduction

3.1 Scope of the Document

This document aims at summarizing the technological solutions that have been
adopted for the definition and development of the PULSE integration infrastructure.
Moreover, it plans to outline the methodology used for integration of all the
heterogeneous tools’ functionalities by describing the data structures and the APIs
provided by the different PULSE tools.

3.2 Structure of the Document

This document is structured into the following sections.
• High level description of the PULSE architecture;
• Description of the different logical integrations occurring between the PULSE

tools;
• Description of the PULSE communication layer;
• Description of the PULSE Integration infrastructure;
• Description of the deployment infrastructure.

3.3 Relations with other Deliverables

The work presented in this deliverable is related to all the WP4 deliverables containing
the reports on the PULSE tools development:

• D4.1 – Decision support validation tool [2]
• D4.2 – IAT Tool [3]
• D4.3 – Logistic tool [4]
• D4.4 – Surge Capacity Generation Tool [5]
• D4.5 – Training tools [6]
• D4.6 – Post Crisis Evaluation Tool [7]
• D4.7 – Event evolution model for biological events.[8]

 9 D6.1 Integration infrastructure description

4 Architecture

4.1 High level description (SES)

D4.1 [2] already provides an high level description of the PULSE platform. We
decided to propose it again in order to facilitate the reading of the present deliverable.
The architecture of the PULSE platform is composed of several software modules
distributed on a service-based architecture.

Figure 1: PULSE Architecture – Component Diagram

As shown in Figure 1 the core of the architecture is represented by the Decision
Support and Validation tool (DSVT) that acts as the front-end interface as well as the
communication backbone of the platform. All the other PULSE tools can (1) exploit the
interfaces provided by the DSVT or (2) provide functionalities to the DSVT itself.
The PULSE platform is specifically composed of the following tools:

• Decision Support and Validation Tool (DSVT): it is front-end interface as
well as the communication backbone of the platform..

• Intelligence Analysis Tool (IAT): it focuses on weak signal detection to alert
decision makers to the occurrence of an unusual biological event.

• Logistic Tool (LT): it is used to assess the required stockpiles of any
necessary equipment, medications and vaccinations..

• Surge Capacity Generation Tool (SCGT): it provides support for the creation
of surge capacity in the event of a major health crisis.

• Training Tools (TT): these tools include a MPORG training platform for
personnel involved in crisis management and a training learning management

 10 D6.1 Integration infrastructure description

system (LMS) tailored for the emergency and health services.
• Post Crisis Evaluation Tool (PCET): this tool is in charge of storing and

classifying all the resources (including geospatial and time references), events
and decisions that have been taken during the crisis. It allows then the
creation of an historical crisis report and the definition of lessons learnt.

• Event evolution model for Biological Events (ENSIR): this tool is the
implementation of a mathematical model of epidemics evolution.

• Smartphone application (SA): the Android application can be used to access
the PULSE platform.

Figure 2: High level architecture

Figure 2 shows the architecture from a multi-layers perspective. The tools have been
grouped in three different layers:

• The Presentation Layer: composed of the User Interface module (part of the
DSVT), the Smartphone Application and the MPORG’s GUI, represents the
graphical user interface of the PULSE platform. It gives the opportunity, to the
different consumers to exploit the features provided by the platform.

• The PULSE Smart Layer: it is the core of the PULSE platform. It is composed
of all those tools that are able to analyse, store and elaborate the pieces of
information coming from the Sources Layer and to provide enriched crisis
management functionalities to the upper Presentation level.

• The Sources Layer: it is the bottom layer of the platform. It includes all the
external services, data sources providing the medical and environmental
information.

 11 D6.1 Integration infrastructure description

4.2 DSVT – Logistic tool

The main objective of the PULSE platform is to develop an operational framework that
allows the platform’s stakeholders to have access to timely key data, planning and
decisions that efficiently help them to manage a major healthcare crisis. To achieve
this the DSVT (more info in D4.1 [2]), which provides the front-end interface of the
platform, invokes the Logistic tool (more info in D4.3 [4]), which is in charge of
managing all the data regarding events, such as the Ambulances, First responders,
Wounded, Hospitals in an incident-like scenario and the probable and confirmed
cases and weak signals in a SARS-like scenario.
The Logistic tool’s functionalities are made available through a standard RESTful
interface so the messages exchanged are HTTP-based requests and responses. The
messages’ body is instead represented in JavaScript Object Notation (JSON).
The Logistic tool handles a diverse number of resources such as:

• Ambulance, AmbulanceCategory, Rescuer, Hospital, Person, Status,
Resource, ResourceCategory, Triage, TriageCategory, Task, TaskCategory,
Contact, ClinicalRecord, Symptom, SymptomCategory, Record, Location,
Multimedia.

The Logistic tool provides a set of methods that allow to create, read, delete and
update each one of above-mentioned resources and that are directly invoked by the
DSVT to obtain or update the current status of the crisis.
In the following paragraph, for the sake of brevity, we describe only the possible
interactions for the management of the Ambulance resource by the DSVT but please
consider that the same interactions are available also for the other resources.
Five different queries are provided by the Logistic tool in order to manage the
Ambulance resource:

• Get all Ambulances
• Create Ambulance
• Get Ambulance details
• Update Ambulance
• Delete Ambulance

The first query “Get all Ambulances” is invoked by the DSVT whenever an update on
the status of all the ambulances is requested. The invocation can be performed by
calling a HTTP request method GET at the following URL:

• http://hostname:8080/logistic/ambulances
Figure 3 shows an example of possible message body for the result of this invocation.

http://hostname:8080/logistic/ambulances

 12 D6.1 Integration infrastructure description

The second query “Create Ambulance” is invoked by the DSVT whenever a new
Ambulance has to be added to the list of the available Ambulances. The invocation
can be performed by calling a HTTP request method POST at the following URL:

• http://hostname:8080/logistic/ambulances
This request must contain a body describing the Ambulance information. Figure 4
shows a possible body message.

[
 {
 "id": 1,
 "name": "Ambulance - Gemelli Hospital",
 "currentLocation": {
 "latitude": 45.433,
 "longitude": 12.45
 },
 "resources": [
 {
 "id": 11,
 "resourceCategory": {
 "id": 1,
 "name": "defribillator"
 },
 "resourceCategoryId": 1
 }
],
 "ambulanceCategory": {
 "id": 1,
 "name": "A"
 },
 "ambulanceCategoryId": 1
 },
{
 "id": 2,
 "name": "Ambulance – San Pietro Hospital",
 "currentLocation": {
 "latitude": 44.32,
 "longitude": 11.47
 },
 "resources": [
 {
 "id": 11,
 "resourceCategory": {
 "id": 1,
 "name": "defribillator"
 },
 "resourceCategoryId": 1
 }
],
 "ambulanceCategory": {
 "id": 1,
 "name": "A"
 },
 "ambulanceCategoryId": 1
 }

]

Figure 3: Get all Ambulances Response

http://hostname:8080/logistic/ambulances

 13 D6.1 Integration infrastructure description

The third query “Get Ambulance details” is invoked by the DSVT whenever the details
of a single Ambulance are requested. The invocation can be performed by calling a
HTTP request method GET at the following URL:

• http://hostname:8080/logistic/ambulances/{ambulanceId}
where ambulanceId is the id of the ambulance of interest. The id can be obtained by
invoking the “Get all ambulances” query.
Figure 5 shows an example of possible message body for the result of this invocation.

The fourth query “Update Ambulance” is invoked by the DSVT whenever a specific
Ambulance has to be updated. The invocation can be performed by calling a HTTP
request method PUT at the following URL:

{
 "ambulanceCategoryId": 1,
 "currentLocation": {
 "latitude": 45.433,
 "longitude": 12.45
 },
 "name": "Ambulance - Gemelli Hospital",
 "resources": [
 {
 "resourceCategoryId": 1
 }
]
}

Figure 4: Create Ambulance Input

{
 "id": 1,
 "name": "Ambulance - Gemelli Hospital",
 "currentLocation": {
 "latitude": 45.433,
 "longitude": 12.45
 },
 "resources": [
 {
 "id": 11,
 "resourceCategory": {
 "id": 1,
 "name": "base"
 },
 "resourceCategoryId": 1
 }
],
 "ambulanceCategory": {
 "id": 1,
 "name": "A"
 },
 "ambulanceCategoryId": 1
}

Figure 5: Get Ambulance details Response

http://hostname:8080/logistic/ambulances/%7bambulanceId%7d

 14 D6.1 Integration infrastructure description

• http://hostname:8080/logistic/ambulances/{ambulanceId}
where ambulanceId is the id of the ambulance of interest. As said above, the id can
be obtained by invoking the “Get all ambulances” query.
This request must contain a body describing the new updated Ambulance information.
Figure 6 shows a possible body message.

The last fifth query “Delete Ambulance” is invoked by the DSVT whenever an
Ambulance must be removed from the list of the available Ambulances. The
invocation can be performed by calling a HTTP request method DELETE at the
following URL:

• http://hostname:8080/logistic/ambulances/{ambulanceId}
where ambulanceId is the id of the ambulance of interest. In this case neither an input
nor a response message is necessary.

4.3 DSVT – IAT

The Intelligent Analysis Tool (IAT) is an architectural component that is able to
systematically gathers and analyses incoming disease-related data and, according to
them, it notifies the presence of possible epidemic weak signals.
The IAT interfaces with the DSVT for different reasons:

1. it receives from the DSVT electronic clinical records related to symptoms
caused by SARS infection;

2. DSVT is in charge to set up the keywords needed to configure the IAT for
filtering incoming tweets by selecting only those related to SARS symptoms;

3. DSVT is also in charge to set up the rules that specify how the IAT internal
CEP Engine has to derive weak signals from the input data;

4. IAT is in charge to send a week signal to the DSVT whenever it is generated;
at this point, the DSVT can show on the Graphical User Interface (GUI) the
message related to that week signal.

The first three functionalities are made available by the IAT through a Web Service
RESTful interface. The forth one is instead offered by the DSVT again through a Web
Service Restful interface. The messages exchanged through these interfaces are
HTTP-based requests and responses. They include a message body whose
information content is represented in JavaScript Object Notation (JSON). Additional
details on each operation are reported below.

An electronic clinical record can be sent to the IAT by calling the HTTP request
method POST at the following URL:

{
 "currentLocation": {
 "latitude": 45.233,
 "longitude": 12.65
 }
}

Figure 6: Update Ambulance Input

http://hostname:8080/logistic/ambulances/%7bambulanceId%7d
http://hostname:8080/logistic/ambulances/%7bambulanceId%7d

 15 D6.1 Integration infrastructure description

• http://hostname:8082/crt.
Figure 7 shows an example of possible message body for this type of operation.

More generally, the JSON members composing the message body are:
• id that represents the identifier of the electronic clinical record;
• text that includes all the medical information about the patient which the

electronic clinical record is referred to;
• latitude which represents the latitude of the hospital where the clinical record

was compiled;
• longitude which represents the longitude of the hospital where the clinical

record was compiled.
When the DSVT needs to submit a clinical records to the IAT, it triggers this HTTP
POST request with an appopriate message body by using an internally integrated
RESTful client.

A keyword for configuring the selection of incoming tweets can be communicated to
the IAT by calling a HTTP request method POST at the following URL:

• http://hostname:8082/cepcfg/keyword.

Figure 8 shows an example of possible message body for this type of operation. In
this case the message body includes an unique JSON member named keyword that
represents the keyword to be communicated to the IAT for configuration purposes.
Similarly to the previous operation, the DSVT can uses its internal RESTful client to
send this HTTP request to the IAT.

A rule for specifying the criteria to generate week signals can be set up in the IAT by
calling a HTTP request method POST at the following URL:

• http://hostname:8082/cepcfg/rules.
Figure 9 shows an example of possible message body for this type of operation.

{
 "id": "12345",
 "text": "Dr. Nutritious Medical Nutrition Therapy for Hyperlipidemia Referral from: Julie Tester, RD, LD, CNSD Phone
 contact: (555) 555-1212 Height: 144 cm Current Weight: 45 kg Date of current weight: 02-29-2001 Admit
 Weight: 53 kg BMI: 18 kg/m2 Diet: General Daily Calorie needs (kcals): 1500 calories, assessed as HB + 20%
 for activity. Daily Protein needs: 40 grams, assessed as 1.0 g/kg. Pt has been on a 3-day calorie count and has
 had an average intake of 1100 calories. She was instructed to drink 2-3 cans of liquid supplement to help
 promote weight gain. She agrees with the plan and has my number for further assessment. May want a Resting
 Metabolic Rate as well. She takes an aspirin a day for knee pain.",
 "latitude": 42.0,
 "longitude": 12.15
}

{
 "keyword":"fever"
}

Figure 8: ‘Store Keyword’ request – Example of message body

Figure 7: ‘Store Clinical Record’ request – Example of message body

http://hostname:8082/crt
http://hostname:8082/cepcfg/keyword
http://hostname:8082/cepcfg/rules

 16 D6.1 Integration infrastructure description

More generally, the JSON members composing the message body are:
• radius that represents the radius of the circular area which the rule applies to;
• latitude that contains the latitude of the circular area’s centre which the rule

applies to;
• longitude that contains the longitude of the circular area’s centre which the rule

applies to;
• desc which includes a textual description of the rule;
• params which specifies an array composed of elements. Each element

consists of a set of parameters that, if considered as a whole, determine the
criteria to be fulfilled to generate a week signal. These parameters are:

o nEvents which specifies the number of relevant events that should
occur in the circular area for generating a week signal;

o timeInterval that defines the duration, in terms of seconds, of the
timeslot in which nEvents should occur to generate a week signal;

o source that specifies the typology of the source from which the
aforementioned events originate (e.g., clinical record, Twitter).

Also in this case, the DSVT can uses its internal RESTful client to send this HTTP
request to the IAT for configuring a rule.

A week signal, once generated, can be sent to the DSVT by calling a HTTP request
method POST at the following URL:

• http://hostname:8082/week_signals

{
 "radius":100,
 "latitudine":41.8,
 "longitudine":12.48,
 "desc":"rule_1",
 "params": [
 {
 "nEvents":1,
 "timeInterval":300,
 "source":"CLINICAL_RECORD"
 },
 {
 "nEvents":1,
 "timeInterval":300,
 "source":"TWITTER"
 }
]
}

Figure 9: ‘Store rule’ request – Example of message body

http://hostname:8082/week_signals

 17 D6.1 Integration infrastructure description

Figure 10 shows an example of possible message body for this type of operation.

{
 "id": 1,
 "description": "description",
 "crawler": [

{
 "URL": "http://hostname_1",
 "text": "text"
 },

{
 "URL": "http://hostname_2",
 "text": "text"
 }
],
 "clinicalRecords": [

{
 "text": "Dr. Nutritious Medical Nutrition Therapy for Hyperlipidemia Referral from: Julie Tester, RD, LD,
 CNSD Phone contact: (555) 555-1212 Height: 144 cm Current Weight: 45 kg Date of current
 weight: 02-29-2001 Admit Weight: 53 kg BMI: 18 kg/m2 Diet: General Daily Calorie needs
 (kcals): 1500 calories, assessed as HB + 20% for activity. Daily Protein needs: 40
 grams, assessed as 1.0 g/kg. Pt has been on a 3-day calorie count and has had an average
 intake of 1100 calories. She was instructed to drink 2-3 cans of liquid supplement to help
 promote weight gain. She agrees with the plan and has my number for further assessment. May
 want a Resting Metabolic Rate as well. She takes an aspirin a day for knee pain.",
 "symptoms": [

 {
 "symptom": "fever"
 },

 {
 "symptom": "cough"
 }

],
 "coordinates": {
 "latitude": 53.222,
 "longitude": 45.332
 }
 }
],
 "twitter": [

{
 "text": "I have so much cough!",
 "symptoms": [

 {
 "symptom": "cough"
 }

],
 "coordinates": {
 "latitude": 45.222,
 "longitude": 54.332
 }
 },

{
 "text": "Fever!",
 "symptoms": [

 {
 "symptom": "fever"
 }

],
 "coordinates": {
 "latitude": 44.222,
 "longitude": 53.332
 }
 }
]
}

Figure 10: ‘Notify Week Signal’ request – Example of message body

http://hostname_1/
http://hostname_1/

 18 D6.1 Integration infrastructure description

More generally, the message body consists of five main JSON members:
• id that represents the identifier of the weak signal;
• description that includes a textual description of the weak signal;
• crawler that specifies an array of data related to web contents which have

corroborated the hypothesis of a possible SARS-like epidemic outbreak. Each
element of this array consists of the following information:

o URL which is the URL of a website where an information attributed to
SARS-like outbreaks has been found;

o text that reports the article or, in any case, a textual content related to
the SARS-like event which is supposed to be relevant;

• clinicalRecords that contains the array of those clinical records which sustain
the hypothesis of a possible SARS-like outbreak. Each element of this array
includes the following information related to a single clinical record:

o text that includes all the medical information about the patient which the
electronic clinical record is referred to;

o symptoms which is an array containing the symptoms experienced by
that patient;

o coordinates which includes the geospatial coordinates of the hospital
where the clinical record originated;

• twitter that contains the array of those tweets which, all together, corroborate
the hypothesis of a possible SARS-like epidemic outbreak. Each element of
the array consists of the following information related to a single tweet:

o text that represents the text reported in the tweet;
o symptoms which is an array containing the symptoms found within the

tweet (each symptom is considered as relevant only if it was specified
among the aforementioned configuration keywords);

o coordinates which includes the geospatial coordinates of the tweet.
Similarly to other HTTP requests here described, if the IAT needs to invoke this POST
method to communicate the generation of a week signal to the DSVT, it can simply
use its internal RESTful client.
The activity carried out to integrate DSVT and IAT mainly consisted (i) in adapting the
DSVT RESTful client to correctly invoke the IAT operations and, vice versa, (ii) in
adapting the IAT RESTful client to invoke the DSVT operation. The DSVT was also
treated to correctly interpret the content of each incoming weak signal to properly
report its information content to a user-friendly GUI.

4.4 DSVT – PCET

The Post Crisis Evaluation Tool (PCET) is another relevant component that interfaces
with the DSVT. From the logical point of view, PCET implements two categories of
functionalities: (i) those used to store information into its internal repository and (ii)
those which allow to retrieve that information through the elaboration of ad hoc
correlations, analytics and statistics. The first category is used by the DSVT to store
historical information about an emergency (when it occurs), the second allows the
DSVT to recover and analyse that information in order to show graphics, analytics and
data that help understanding the evolution of the event for a post crisis evaluation.
All the mentioned functionalities are made available by PCET through a specific
RESTful interface. The offered HTTP methods are POST requests that include a

 19 D6.1 Integration infrastructure description

message body whose information content is represented in JSON. On the other hand,
the DSVT is equipped with an integrated RESTful client which is used to invoke the
desired operations. Additional details on implemented POST requests and structure of
possible message bodies are already reported in D4.6 [2].
The activity carried out to integrate DSVT and PCET mainly consisted in adapting the
DSVT RESTful client to correctly invoke the PCET operations in order to obtain useful
data for the post crisis evaluation. The DSVT was also treated to correctly interpret
the content of each response message body, both in case of information storage and
in case of query for information retrieval. This content, if present, is returned in JSON
format and afterwards it is properly reported to the user with a user-friendly GUI.

4.5 DSVT – ENSIR

As described in D4.7 [8], the objective of the ENSIR Tool is to provide the expected
evolution of the spatial distribution of an epidemic, taking into account different factors
that depend on the social and logistic characteristics of the interested area. In the
SARS-like scenario, a decision maker (that accessed the PULSE platform through the
DSVT) could be interested in knowing the possible spread of the disease within the
following days/months/years. This information can help him/her to suggest an
intervention (e.g., major procurement of resources) in the hospitals located in the
zones that according to the simulated scenario will probably suffer from the epidemic
evolution.
The ENSIR functionalities are made available through a Web Service interface based
on the SOAP protocol. The DSVT integrates then a SOAP client able to specifically
invoke the methods provided by the ENSIR tool. Additional details on implemented
requests and structure of possible message bodies are already reported in D4.7.
The activity carried out to integrate the DSVT and the ENSIR mainly consisted in
adapting the DSVT SOAP client to correctly invoke the ENSIR Web service
operations. The DSVT, once obtained the data from the ENSIR, performs an internal
evaluation of the responses and directly visualizes on a map the possible spread of
the disease, as described in D6.1.

4.6 DSVT – SCGT

As described in D4.4 [5], the objective of SCGT is to predict the possible evolution of
some critical medical resources during a major health crisis. This functionality is
exploited by the DSVT during the simulation phase that is, as said in D6.1, the
description of the possible behaviour of all the actors involved in the scenario (e.g.
casualties, first responders, ambulances, hospitals) according to the available
information and the integrated evolution models.
The SCGT functionalities are made available through a Web Service interface based
on the SOAP protocol. Similarly to the DSVT – ENSIR integration described in 4.5, the
DSVT integrates a SOAP client able to specifically invoke the methods provided by
the SCGT tool. Additional details on implemented requests and structure of possible
message bodies are already reported in D4.4.
The activity carried out to integrate the DSVT and the SCGT mainly consisted in
adapting the DSVT SOAP client to correctly invoke the SCGT Web service
operations. Therefore, the DSVT elaborates the data coming from the SCGT during
the simulation to efficiently predict the possible evolution of the emergency situation.

 20 D6.1 Integration infrastructure description

4.7 MPORG – Logistic tool

Similar to the DSVT, the MPORG provides a front end to the other Pulse services, in
this case for the purposes of game-based training. After authentication, the MPORG
interfaces with the other Pulse components in a read-only manner.
For game setup, the MPORG requests the logistics data with GET requests for
Locations, Hospitals and Ambulances, in the same manner as described in 4.2.
To calculate the players score, the MPORG compares each decision made with the
optimal decision (the Optimization functionality has been already deeply described in
D4.3 [4]) at that time by sending the current hospital & patient state details to the
Logistic tool and comparing that result with the state of the game after that decision
has been made.
A request for a new optimal decision is sent to the Logistic tool by calling a HTTP
request method POST at the following URL:

• http://hostname:8080/optimization

Figure 11 shows an example of possible message body for this type of operation.
On completion of the game, the results are added up and displayed on screen for
analysis.

Figure 12 shows an example of possible message body for the result of the
optimization request to the Logistic tool.
Once the game session is closed, all data retrieved from the services is discarded,
and no other requests are made.

4.8 MPORG – SCGT

For generation of casualty details, the SCGT service is used using the jar library as
defined in D3.1 [9] and integration as described in section 4.6 here.
During the game, as the player applies treatment to a patient subsequent requests are
made to the SCGT service to update the status of the patient. An example is

{
 "name": "Named Event",
 "patients": [. current patient list & statuses..],
 "hospitals": [. current hospital list & statuses ..]
}

{
 "name": "Named Event",
 "patients": [. optimal patient list & statuses..],
 "hospitals": [.. optimal hospital list & statues.]
}

Figure 11: Optimization functionality invocation

Figure 12: Response from optimization functionality

http://hostname:8080/optimization

 21 D6.1 Integration infrastructure description

described in the following java code:

Where BIO_SERVICE is the SCGT tool that takes the current status of a patient, the
time and the applied therapy as parameters and generates an appropriate new status,
which is then applied to the geo-located patient in the game.

4.9 Smartphone app – Logistic tool

The Smartphone App is another front-end to the system, in a mobile/tablet form factor
for the specific task of allowing responders in the field to read tasks & respond by
submitting data records.
The App authenticates the users as normal, then requests the latest list of tasks from
the Logistic tool with a GET request to the following URL:

• http://hostname:8080/logistic/tasks

Figure 14 shows an example of possible message body for the result of this
invocation.
Similarly, to obtain the list of messages a GET message is sent to the following URL

• http://hostname:8080/logistic/messages

Figure 15 shows instead an example of possible message body containing the list of
the messages to be displayed on the Smartphone app.

"tasks": [
 {

id: 1,
type: "triage",
title: "Perform Triage at site X",
description: "<p>This is an example triage task, with a longer html description.</p>",
timestamp: 1456145557539,
status: "open"

 }

"messages": [
 {
 id: 1,
 title: "Stadium crush in Dublin at a concert in Aviva
 Stadium, multiple causalities.",
 description: "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit, sed do eiusmod ... ",
 timestamp: 1456145557539
 },
 {
 id: 2,
 ...

 PatientStatus updatedStatus = BIO_SERVICE.patEvlove(patientEvolveParams);
 geoPatient.setHealthStatus(updatedSatus);

Figure 13: SCGT Invocation

Figure 14: Retrieve Tasks list

Figure 15: Retrieve Messages List

http://hostname:8080/logistic/tasks
http://hostname:8080/logistic/tasks

 22 D6.1 Integration infrastructure description

An important part of the Smartphone app is to allow a user to accept a task. The app
is able to do so by sending a PUT request to the following URL:

• PUT http://hostname:8080/logistic/task/{taskId}

Similarly, when a task is complete a user can send an update that specific task
specifying for example, a new task status and the actual user coordinates.

• PUT http://hostname:8080/logistic/task/{taskId}

For recording data, the app can send a new triage data record to the Logistic tool by
sending a POST message to the following URL:

• http://hostname:8080/logistic/triage/
Figure 18 shows an example of message body containing the actual triage information
of a casualty. The message can contain the barcode id taken directly from the
bracelet put on the causality wrist, a photo of the injured person, a text and an audio
note and the actual location of the person.

{
 "status": "in_progress",
 timestamp: 1456145557539
}

{
 "status": "busy ",
 "coordinates": {
 "latitude": 44.222,
 "longitude": 53.332
 },
 timestamp: 1456145557539
}

{
 "task_id": 1,
 "type": "triage",
 "barcode": "SOME_CODE_AS_UID_STRING",
 "risk": "high",
 "textNote": "This is some text manually typed into a textarea.",
 "audioNote": "data:audio/mp3;base64,T2dnUwACAAA ... ",
 "photo": " ... ",
 "location": "53.338265899999996,-6.2505142",
 "timestamp": 1456145557539
}

Figure 16: A user accept a task

Figure 17: Task update

Figure 18: Triage message body

http://hostname:8080/logistic/task/%7btaskId%7d
http://hostname:8080/logistic/task/%7btaskId%7d
http://hostname:8080/logistic/triage/

 23 D6.1 Integration infrastructure description

4.10 Communication layer

The previous paragraphs summarize all the logical connections occurring between the
PULSE tools. But from an operational point of view, all the connections are actually
handled by the DSVT that acts as the backbone communication layer and can be
considered the “Service Bus” used by the PULSE tools to communicate.
In the following paragraph we propose again the internal structure of the DSVT (that
has been already described in D4.1) in order give a complete overview on the
integration structures that have been built to develop the PULSE platform.
The DSVT Manager is able to:

- Group the tool functionality under a single software interface
- Group several and heterogeneous data sources and provide such sources as

a single repository
- Hide the internal modularity of the platform
- Make transparent to the user the internal mapping of the tool

Because of this, the DSVT Manager provides an API that makes available the internal
functionalities of the tool.

Figure 19: DSVT Manager

 24 D6.1 Integration infrastructure description

The block diagram represented in Figure 19 shows the functional elements, which
constitute the DSVT Manager:

• API Gateway: provides an HTTP interface to Clients. Each request is
processed here and is routed the Authentication Handler

• Authentication Handler:
o Act as a proxy gateway handling the incoming requests;
o Manage the User authentication against the Authentication server;
o Manage sessions after user authentication;
o Manages the request of access token from the Authentication Server

and return to the user an access token
o Validates the access token against the authentication server and routes

the request to Service Bus or, if necessary, rejects the request

• Service Bus: it is the aggregation layer; it provides a unique software
interface and manages the aggregation of the platform tools.

4.11 Integration with external systems

Considering the necessity to offer always updated information and to provide a
complete and efficient support, the PULSE platform has been integrated with already
existing services that are currently used by actors involved in emergency coordination
activities.
Three different systems have been selected for this purpose:

• Open Data for real-time access in the emergency department of Lazio:
o This dataset allows to acquire the status of the emergency department

of all the hospitals located in the Lazio Region (in Italy).
For each hospital it is possible to see the number of patients under
observation, under treatment or that are waiting to be examined by a
doctor. The number of patients is in turn divided among four different
categories (red, yellow, green, white) depending on the priority code
assigned to each individual patient.

o The system is currently used by the Emergency coordinator operating
in the Lazio Region and it is publicly accessible through the Lazio
Region web site: http://www.regione.lazio.it/accessiprontosoccorso/

o The PULSE platform integrates the functionalities provided by this
dataset by invoking the API accessible at this link:
http://dati.lazio.it/catalog/en/dataset/pronto-soccorso-accessi-in-tempo-
reale

o The functionality has been integrated into the DSVT GUI and allows
any emergency coordinator using the PULSE platform to have a real-
time access to the Lazio Hospital emergency department information.
Figure 20 shows the current available information of Hospital Gemelli’s
emergency department.

http://www.regione.lazio.it/accessiprontosoccorso/
http://dati.lazio.it/catalog/en/dataset/pronto-soccorso-accessi-in-tempo-reale
http://dati.lazio.it/catalog/en/dataset/pronto-soccorso-accessi-in-tempo-reale

 25 D6.1 Integration infrastructure description

Figure 20: DSVT - Emergency Department integration

• ProMED - the Program for Monitoring Emerging Diseases:

o ProMED is dedicated to the rapid dissemination of information on
outbreaks of infectious diseases and acute exposures to toxins that
affect human health. It is also able to provide up-to-date and reliable
news about threats to human, animal, and food plant health around the
world.

o The system is accessible at the website http://promedmail.org/
o The PULSE platform allows to access the information handled by the

ProMED website directly from the DSVT GUI. As shown in Figure 21, a
user can select a specific event, can see the communications related to
that selected event and can visualize it on a map.

Figure 21: DSVT - ProMED Integration

o The PULSE platform provides also an alerting system that periodically

checks the ProMED website and sends an alert whenever a new

http://promedmail.org/

 26 D6.1 Integration infrastructure description

ProMED communication has been added to the system. This allows the
decision makers to have an always updated status of epidemics all
around the world.

• HealthMap:
o As stated in [14], HealthMap brings together disparate data sources,

including online news aggregators, eyewitness reports, expert-curated
discussions and validated official reports, to achieve a unified and
comprehensive view of the current global state of infectious diseases
and their effect on human and animal health. The system monitors,
organizes, integrates, filters, visualizes and disseminates online
information about emerging diseases.

o The system is accessible at the website http://www.healthmap.org/en/
o The PULSE platform integrates the search widget and the results

generated by HealthMap directly into the DSVT general overview map.
In this way, a decision maker can easily access to the HealthMap-
related alerts by simply selecting the HealthMap layer on the DSVT
GUI.

, As well as integrating data from external emergency response system, PULSE also
provides an external interface to facility the integration of PULSE generated
information into third party applications. Third party applications can easily integrate
with the PULSE platform by simply invoking the RESTful API provided by the PULSE
tools. For example, as described in 4.2, 4.7 and 4.8, the Logistic tool exposes a
standard RESTful interface and provides set of methods that allow to create, read,
delete and update the crisis resources. These methods, as seen above, are actually
invoked by other PULSE tools (e.g., DSVT, Smartphone app and MPORG), but the
same integration can be performed by other authorized external systems that can
exploit the Logistic tool functionalities and then retrieve and possibly update the crisis
resources handled by the PULSE platform.

4.12 Integration with existing standards

As described in WP4, all the PULSE tools are based on well-known and up-to-dated
standards for the web communication such as:

• HTTP with the RESTful approach used by most of the PULSE tools
• SOAP used by 2 tools (SCGT and ENSIR).

As a result of this and considering the increasing acceptance of these two standards
as the standards de-facto for the systems communication, the PULSE platform can be
easily adaptable and integrated with a plethora of already existing systems.
This approach can be considered valid for most of the domains but in the case
specific of the Health domain, some effort has been spent towards the integration with
already existing standards that can facilitate the communication with a usually strict
and pretty closed environment. In this specific case, the EDXL-HAVE standard [15],
which specifies through an XML document format, the communication of the status of
a hospital, its services, and its resources, has been considered for the integration
within the PULSE platform.
Specifically, 3 different steps have been performed:

http://www.healthmap.org/en/

 27 D6.1 Integration infrastructure description

• The EDXL-HAVE XML schema (and its dependencies) [16] has been
collected and analysed.

• The XML Schema has been used to generate an adapter for the marshalling
(and un-marshalling) of EDXL-HAVE messages to Java Objects (and vice
versa).

• The adapter has been integrated into the Logistic tool, which is the PULSE
tool in charge of storing and managing the hospitals resources.

The EDXL-HAVE is just an example of possible standards’ integration and it is
plausible that more standards will be integrated during a possible future exploitation of
the PULSE platform.

 28 D6.1 Integration infrastructure description

5 Integration infrastructure

5.1 Possible implementation strategies

In the last 20 years several integration patterns have been defined for the
development and deployment of software applications.
These patterns can be summarized in 4 main approaches:

• Monolithic approach;
• Multi-tier approach;
• Service Oriented architecture;
• Microservices approach.

5.1.1 Monolithic approach

It is basically the first approach where all the application were developed and
deployed as a single entity. In such approach all the functionalities provided by the
software applications are piled into a single monolithic application that aggregates
everything (e.g. authorization, business, data storage functionalities). This kind of
approach is suitable for proof of concepts and prototypes but in production
environments the deployment, scaling and upgrading of such monolithic application
can become really difficult. Moreover, as a single entity, a monolith can only scale by
replicating the entire application. This could become too much costly and a waste of
resources as traffic and load grows.

5.1.2 Multi-tier approach

The limits of the monolithic approach have been partially addressed with the definition
of the Multi-tier architecture approach. In this approach an application is logically
distributed among different layers that generally consist of a data layer, a business
logic layer, and a presentation layer (and for this reason it is usually called 3-tier
application).
In this case, the three tiers can be upgraded or replaced independently in response to
changes in requirements and, in case of an increasing load, we would be able to just
scale the business logic layer. However, the same drawbacks of the monolith
approach can appear and be related to just the business logic tier in case it would
become too much big and then hard to scale.

5.1.3 Service oriented architecture

The Service Oriented Architecture (SOA) was designed to overcome some of the
aforementioned limitations by introducing the concept of service which is an
aggregation and grouping of similar functionalities offered by an application.
For example, developers would create a user service that handles authentication, an
order service that handles billing or a notification service that handles sending emails.
This approach can effectively improve the scalability of the system as each service
would be smaller and so more easy to scale.
This approach brings a great improvement regarding the integration capabilities of a

 29 D6.1 Integration infrastructure description

system, but can lead to complex services that would start growing over time by
accumulating several dozens of functionalities. For this reason SOA applications
could turn as well into a mixture of a several monolithic service instances bringing
along all the aforementioned drawbacks.

5.1.4 Microservices approach

The idea behind the microservices architecture (MSA) is about developing a single
application as a suite of small and independent services that are running in their own
process, developed and deployed independently. Instead of connecting various
applications together, the microservices pattern aims to create a single, cohesive
application comprised of independently developed and deployed services that each
follow the single responsibility principle. By limiting the scope of what a service can
do, developers can ensure they do not unintentionally end up with a large number of
monoliths. It differs from the service-oriented architecture (SOA) approach since the
latter aims at integrating various (business) applications whereas several
microservices belong to one application only. Microservices architectures are
substantially less cumbersome than traditional SOA and don’t require the same level
of governance and canonical data modelling to define the interface between services.

5.2 Our solution – Docker

As described in 5.1, different approaches can be followed for the implementation of a
software platform. In our case, according to the PULSE platform nature and the
provided requirements, the most suitable one is the Microservices approach. The
PULSE platform, as described in 4.1, is composed of a constellation of tools
interconnected each other. If we consider each tool as a “microservice”, the similarity
between the Microservices architecture approach and the PULSE platform is pretty
straightforward.
In this context a new rising technology that comes in our support is Docker [10].
Docker is an open-source project that automates the deployment of applications
inside software containers. A Docker software container can be seen as bundle that
wraps up an application and all its dependencies (code, runtime, system tools, system
libraries) in a single package, giving the possibility to completely isolate an
application.
At the core of the Docker platform is the Docker Engine [11], a runtime tool that builds
and runs the Docker software containers. In the PULSE context, we decided to exploit
the functionalities offered by the Docker platform and to transform each tool
composing the PULSE platform in a Docker container. All these “Docker-ized” tools lie
then on top of the Docker Engine that handles the communication and the
interconnection between the tools/containers.

 30 D6.1 Integration infrastructure description

Figure 22: Pulse Docker architecture

Figure 20 shows the Pulse Docker architecture. Each dotted border light-blue
component represents a single container that includes one of the PULSE tools. The
second layer composed of light-violet dotter components represents instead a set of
containers that manage the data of the upper components. The bottom layer is then
composed of the Docker Engine that, as said above, manages the interconnections
between all the Docker containers.
Docker allows to simply build containers by reading the instructions reported in
particular text documents called Dockerfiles.

Figure 21 shows an example of dockerfile that can be used to automatically build an
image of a container including the minimal software components needed to make
running the PCET. Let’s go to analyse the content of this dockerfile:

• FROM command is used to download and install the Java Runtime
Environment where the PCET is executed (the presence of a Java layer is an
essential requirement since PCET is, in effect, a Java application);

• ADD command is used to copy all the files composing the PCET in the
specified working path inside the container (i.e.,
/home/Pulse/Software/PostCrisisEvaluationTool);

• WORKDIR command is used to promote to working directory that located in
the reported path (i.e., /home/Pulse/Software/PostCrisisEvaluationTool); this
directory is then considered for the execution of the subsequent commands;

• EXPOSE command informs the Docker Engine that the container listens on
the specified network port at runtime (i.e., 8080); this allows external PCET
clients (i) to send HTTP requests to the PCET running inside the container
and (ii) to get back the related HTTP responses;

• CMD command is used to run the PCET’s executable Java file named
PostCrisisEvaluationTool.jar.

Dockerfile to run the Post Crisis Evaluation Tool

FROM java:8-jre
ADD "PostCrisisEvaluationTool" "/home/Pulse/Software/PostCrisisEvaluationTool"
WORKDIR /home/Pulse/Software/PostCrisisEvaluationTool
EXPOSE 8080
CMD ["java","-jar","PostCrisisEvaluationTool.jar"]

Figure 23: Post Crisis Evaluation Tool – Dockerfile to build the container’s image

 31 D6.1 Integration infrastructure description

Once the container has been built, the ulterior step is to trigger the process related to
the container in background.
The dockerfile in Figure 21 per se allows to build an image used to make running the
PCET related container. However, if that dockerfile is used alone, the resulting
container will also include the data stored in the PCET’s Historical Information
Repository. This means that there is no separation between the application tool and
its related data, since both are located into the same container. This construction has
a considerable drawback: if the application tool needs to be changed with an updated
release, its related data will be lost, since the container needs to be removed and
substituted with another container including the newer release.
A solution to avoid this problem is to separate tools and data as shown in Figure 20.
As previously stated, this kind of architectural organization is based on two containers
for each tool, one for the application tool and one for its data. In such a way, should
an application tool be substituted with an updated version, the only container that
needs to be changed is that including the application itself, whereas the container
including the data does not require any change.
Docker allows to realize such architectural organization exploiting its integrated
features. Let’s consider again the PCET case to help explain how it can be realised.
The dockerfile reported in Figure 21 is still valid to build an image for the container
related to the application tool. However a further dockerfile is needed to build an
additional image for the container including the data stored in the Historical
Information Repository (this dockerfile is omitted here as it is similar to the one
reported above and it does not add further interesting notions to the discussion).
At this point, the Docker Engine is responsible for the communication between these
two containers that is realized through the so called docker-compose [12], a tool for
defining and running multi-container Docker applications.

Figure 24: Post Crisis Evaluation Tool – Docker-compose
The docker-compose tool analyses the instructions reported in a particular text
document in order to attach the application tool container to the related data
container. Figure 22 shows the docker-compose document that links the PCET’s
containers. Let’s analyse its content:

• pcet refers to instructions used to run the PCET container, in particular:
o build specifies the relative path where is located the folder containing

the PCET Java application and the dockerfile to build an image of its
container;

o ports defines a mapping between the exposed container port and the
corresponding port of the machine hosting the container (i.e.,
host:container);

o volumes_from mounts the data volumes taken from another container
(i.e., that defined in pcet_data);

pcet:
 build: ./PCET
 ports:
 - "8080:8080"
 volumes_from:
 - pcet_data
pcet_data:
 build: ./PCET_data
 volumes:
 - /home/Pulse/Software/PostCrisisEvaluationTool/data

 32 D6.1 Integration infrastructure description

• pcet_data refers to instructions used to run the PCET’s data container, in
particular:

o build specifies the relative path where is located the folder containing
the PCET basic data and the dockerfile to build an image of its
container;

o volumes specifies the container’s data path.

 33 D6.1 Integration infrastructure description

6 Deployment

As described in 5.2, the PULSE platform follows the Microservices architecture
paradigm and has been integrated on top of the Docker tools suite. Docker gives the
possibility to create and deploy applications faster and easier and to deploy scalable
services, securely and reliably, on a wide variety of platforms.
In our case, we decided to deploy our docker-compliant components in a Ubuntu [13]
machine with Docker installed. This allows us to rapidly have the PULSE platform up
and running in a really short amount of time and to easily replicate the same
deployment in another Linux machine for e.g. testing purposes or privacy data issues.

Figure 25: PULSE Platform Deployment

As shown in Figure 23, we have also defined a public address (http://pulse-
fp7.noip.org) for the external provision of the PULSE platform. We plan to use the
platform hosted at this address during the trials that will be performed in WP7.

http://pulse-fp7.noip.org/
http://pulse-fp7.noip.org/

 34 D6.1 Integration infrastructure description

References

[1] PULSE Project – Description of Work, version 1.0, October 2013.
[2] PULSE Project Deliverable – D4.1 Decision support validation tool.
[3] PULSE Project Deliverable – D4.2 IAT tool
[4] PULSE Project Deliverable – D4.3 Logistic tool
[5] PULSE Project Deliverable – D4.4 Surge capacity tool
[6] PULSE Project Deliverable – D4.5 Training tools
[7] PULSE Project Deliverable – D4.6 Post crisis evaluation tool
[8] PULSE Project Deliverable – D4.7 Event evaluation for biological event
[9] PULSE Project Deliverable – D3.1 Context models
[10] Docker – Official Web site https://www.docker.com/
[11] Docker Engine – Official Web site https://www.docker.com/products/docker-

engine
[12] Docker compose documentation - https://docs.docker.com/compose/
[13] Ubuntu OS - http://www.ubuntu.com/
[14] HealthMap - http://www.healthmap.org/site/about
[15] Emergency Data Exchange Language (EDXL) Hospital Availability Exchange

(HAVE) Version 1.0 - http://docs.oasis-open.org/emergency/edxl-
have/v1.0/emergency_edxl_have-1.0.html

[16] EDXL-HAVE v1.0 XML Schema - http://docs.oasis-open.org/emergency/edxl-
have/edxl-have.xsd

https://www.docker.com/
https://www.docker.com/products/docker-engine
https://www.docker.com/products/docker-engine
https://docs.docker.com/compose/
http://www.ubuntu.com/
http://www.healthmap.org/site/about
http://docs.oasis-open.org/emergency/edxl-have/v1.0/emergency_edxl_have-1.0.html
http://docs.oasis-open.org/emergency/edxl-have/v1.0/emergency_edxl_have-1.0.html
http://docs.oasis-open.org/emergency/edxl-have/edxl-have.xsd
http://docs.oasis-open.org/emergency/edxl-have/edxl-have.xsd

	Revisions
	List of figures
	1 List of acronyms
	2 Executive Summary
	3 Introduction
	3.1 Scope of the Document
	3.2 Structure of the Document
	3.3 Relations with other Deliverables

	4 Architecture
	4.1 High level description (SES)
	4.2 DSVT – Logistic tool
	4.3 DSVT – IAT
	4.4 DSVT – PCET
	4.5 DSVT – ENSIR
	4.6 DSVT – SCGT
	4.7 MPORG – Logistic tool
	4.8 MPORG – SCGT
	4.9 Smartphone app – Logistic tool
	4.10 Communication layer
	4.11 Integration with external systems
	4.12 Integration with existing standards

	5 Integration infrastructure
	5.1 Possible implementation strategies
	5.1.1 Monolithic approach
	5.1.2 Multi-tier approach
	5.1.3 Service oriented architecture
	5.1.4 Microservices approach
	5.2 Our solution – Docker

	6 Deployment
	References
	Blank Page

